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Transition Curves on Railway Roads in Terms of Feasibility

Władysław KOC1

Summary
Th e work fi rst addressed the issue of accepting limit values for kinematic parameters on railway roads, demonstrating that 
it is appropriate to maintain the same rules for all types of transition curves. Th en, the prevailing opinion about the reason 
for the limited scope of application of the so-called smooth transition curves was confi rmed. Th ese curves have one major 
disadvantage – very small values of horizontal ordinates (and ordinates of the gradient due to cant) in the initial region, in 
practice oft en impossible to implement and then maintain. Th e main part of the work was devoted to the determination of 
a new form of transition curve, which – in contrast to the commonly used clothoid – is characterized by a gentle curvature 
in the area of entry into the circular arc. A clear advantage of this curve (from the implementation point of view) over the 
smooth transition curves of the Bloss curve was demonstrated.
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1. Introduction
Th e issue of transition curves on roads for motor ve-

hicles and railways is still topical. New curve forms are 
constantly being sought [1, 35, 78, 19, 25, 2729, 33].
Among Polish researchers, A. Kobryń [1014] broad-
ly deals with this issue on roads for  motor vehicles, 
while K. Zboiński's team with railway roads, which 
also took into account the dynamic model of the sys-
tem: rail vehicle – track [31, 32].Th e conducted re-
search is undoubtedly very interesting and, to a large 
extent, develops the theory of the discussed issue. 
Th ey point to the benefi ts that would be provided by 
practical application of the proposed solutions. Th e 
Wiener Bögen transition curve developed in Austria 
[9, 30] has even been patented.

Unfortunately, the common feature of the search 
for new forms of transition curves carried out over 
the last few decades is the lack of a solution that would 
be accepted in practice and widely implemented. Th e 
clothoid, with its linear curvature, still plays a domi-
nant role in the geometrical systems of communica-
tion routes. Its basic disadvantage is the defl ections 
on the curvature diagram, occurring in the initial and 
fi nal regions, which are the cause of adverse dynamic 
interactions in the track – rail vehicle system. On rail-

way roads, the third-degree parabola, being a simpli-
fi cation of the clothoid, is still used, and this simpli-
fi cation, with the current calculation possibilities, has 
no justifi cation at all.

Th e acceleration values along the length of the tran-
sition curve result from the distribution of curvature, 
which should be the basis for the identifi cation of transi-
tion curves. In general, it can be linear or non-linear. For 
non-linear curvature change, the term “smooth transi-
tion curves”, used by R.J. Grabowski [6], corresponding 
to the key importance of the function class describing 
curvature, seems appropriate. Most transition curves 
combine a common algorithm for curvature determina-
tion using diff erential equations [1618, 24].

It should be noted that there is a certain group of 
smooth transition curves that have been recognised 
on the railways and are present in the current design 
rules. Th ey have a long history dating back to the fi rst 
half of the 20th century, but their scope of applica-
tion is still limited. In Poland, they were propagated 
in a fundamental book by H. Bałuch [2]. Th e charac-
teristics of the following curves are presented there: 
fourth-degree parabola, the Bloss curve, the cosine 
and sinusoidal curves. Comparative analysis of the 
transition curves mentioned above was the subject of 
some works [15, 22].
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2. Acceptance of limit values for kinematic 
parameters

On railway roads, the mutual comparison of tran-
sition curves requires certain assumptions to be made 
regarding the applicable values of the permissible kin-
ematic parameters – the acceleration increment ψ and 
the speed of rolling stock wheel lift ing on the gradient 
due to cant f. Th ere is an intuitive conviction that much 
higher (even doubled) limit values can be assumed for 
smooth transition curves than for the clothoid (since 
the maximum values ψ and f occur only in the cen-
tral part of these curves and they are much smaller in 
the extreme parts). Th is was refl ected in the binding 
regulations in Poland [26], however, it is questionable.

Th e kinematic parameters ψ and f on transition 
curves and gradients due to cant can be described us-
ing the following general formulae:
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where:
V – train speed in km/h,
am – unbalanced acceleration on a  circular curve 

in m/s2,
h0 – cant value on a circular curve in mm,
l – variable defi ning the position of a given point 

on the transition curve in m,
g(l) – function of variable l related to the curvature 

of a given transition curve (value without unit).

Th e g(l) function depends on the type of transition 
curve. For the mentioned curves from [2], if we deter-
mine their length by lk, equations g(l) and ( )d g l

dl
 are 

as follows:

for the clothoid:
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 for the sine curve:
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Th e equations (1) and (2) imply that:
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which, for the transitional curves concerned, leads to 
the following relationships:
 for the clothoid:
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 for the Bloss curve:
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 for the sine curve:
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Th e relationships are presented graphically in Fig-
ure 1. It is evident that exceeding the values ψ and foc-
curring on the clothoid is not local (point), but covers 
at least half of the length of the considered smooth 
transition curves, and the value of this excess is signif-
icant. Th e intervals of the variable l/lk while exceeding 
the values ψ and f are as follows:
 for a fourth-degree parabola and the sine curve 

–   0,25;0,75kl l ,
 for the Bloss curve

–  0,5 3 6;0,5 3 6kl l    ,e.i. 
  0,211;0,789kl l

 for the cosine curve
–      arcsin(2 ) ;1 arcsin(2 )kl l , e.i. 

  0,22;0,78kl l .  
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 on the length of the 

considered transition curves [own study]

For this reason too, it seems appropriate to main-
tain the same rules on the limit values for kinematic 
parameters for all types of transitional curves. Th e 
assumption of the same values for ψper and fper  leads 
to the need to extend the individual smooth transi-
tion curves in relation to the clothoid (by introducing 
an appropriate A coeffi  cient resulting from an over-
run value of ψ and f at the centre of the curve). It is 
then possible to compare the horizontal ordinates of 
transition curves and gradients due to cant transition 
ordinates. Th e A-coeffi  cient values are as follows:
 for a fourth-degree parabola A = 2,
 for the Bloss curve A = 3/2,
 for the cosine curve A = π/2,
 for the sine curve A = 2.

3. Horizontal ordinates of transition curve 
and gradient due to cant  ordinates in 
the initial region 

One paper [18] presented an analysis of the con-
sidered forms of smooth transition curves. Th e 
identifi cation of k(l) curvature for particular curves 
by means of diff erential equations was made, the par-
ametric equations x(l) and y(l) were determined and 
the list of these equations was presented:
 for the clothoid:
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 for the Bloss curve:
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 for the cosine curve:
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 for the sine curve:
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Th eoretical analyses and experimental studies, e.g. 
[1517, 22], unequivocally indicate lower (and there-
fore  more favourable) dynamic interactions during 
train runs on smooth transition curves. However, in 
spite of its undisputed advantages, the scope of applica-
tion of these curves in the operated railway tracks  is, 
to a large extent, limited. Th ere is an opinion that their 
correct delineation in the fi eld is very diffi  cult due to 
very small values of horizontal ordinates (and ordi-
nates of gradient due to cant) in the initial region. Th ey 
result from excessive resmoothing of the curvature dia-
gram in this region. In practice, this leads to shortening 
of the transition curve (i.e. elongation of the adjacent 
straight) in relation to the design assumptions. It seems 
that this issue should be looked at more closely.

Two geometric systems of transition curves for the 
speed V = 160 km/h, the characteristics of which are 
presented in Table 1, were considered in the compara-
tive analysis. Th e following limit values of kinematic 
parameters were adopted: unbalanced acceleration on 
a  circular curve aper  =  0.85  m/s2, acceleration incre-
ment ψper  =  0.3  m/s3 and wheel lift ing speed on the 
gradient due to cant fper = 28 mm/s. Th e fi rst system 
(R  =  1850  m, h0  =  60  mm) Two geometric systems 

Table 1
List of characteristic values for the transient curves under consideration

System R [m] h0 [mm] am [m/s2] Type of transition curve lk [m] ψmax [m/s3] fmax [mm/s]

I 1850 60 0.675

Clothoid 100 0.300 26.67
Fourth-degree parabola 200 0.300 26.67
Bloss curve 150 0.300 26.67
Cosine curve 158 0.298 26.51
Sine curve 200 0.300 26.67

II 1250 115 0.828

Clothoid 183 0.201 27.93
Fourth-degree parabola 365 0.201 28.01
Bloss curve 274 0.201 27.98
Cosine curve 287 0.201 27.97
Sine curve 365 0.201 28.01

[Own study].
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of transition curves for the speed V = 160 km/h, the 
characteristics of which are presented in Table 1, were 
considered in the comparative analysis. Th e follow-
ing limit values of kinematic parameters were ad-
opted: unbalanced acceleration on a  circular curve 
aper = 0.85 m/s2, acceleration increment ψper = 0.3 m/s3

and wheel lift ing speed on the gradient due to 
cant fper  =  28  mm/s. Th e fi rst system (R  =  1850  m, 
h0  =  60  mm) tried to achieve the shortest possible 
length of the transition curve by using a  relatively 
small cant on a circular curve (the longer the curve 
length, the smaller the values of horizontal ordinates). 
In the second system (R = 1250 m, h0 = 115 mm) the 
radius of the curve R, was reduced, which  made it 
necessary to introduce a larger cant and consequently 
led to an increase in the length of transition curves.

Table 2 gives the values of the horizontal ordinates of 
the transition curves in Table 1 of System I for the fi rst 
20 m section. Figure 2 provides a suitable graphic illustra-
tion. Figure 3 shows the percentage values of the ratio of 
the horizontal ordinates of the smooth transition curves 
to the ordinates of the clothoid in the initial region.

Fig. 2. Diagrams of horizontal ordinates of transition curves 
from System I in Table 1 in the fi rst 20-m section [own study]

As can be seen, in this case the horizontal ordinates 
of smooth transition curves in the initial region are very 
small. For the fi rst 10 m they are a fraction of a milli-
metre, at 20 m they do not yet reach 1 mm (0.1 mm for 
the sine curve). It is diffi  cult to imagine the practical 
implementation of these transition curves, especially 
the sine curve, the ordinate of which for l = 20 m con-
stitutes only 1% of the clothoid ordinate (Fig. 3).

Fig. 3. Percentage values of the ratio of horizontal ordinates of 
smooth transition curves to clothoid ordinates in the initial re-

gion for System I in Table 1 [own study]

Th e presented remarks also apply to the gradient 
due to cant. In Table 3, the values of the gradient due 
to cant ordinates on transition curves from System I 
in Table 1 over the fi rst 20 m section are given, and 
in Figure 4 the appropriate graphic illustration is pre-
sented.

Over the fi rst 10 m, the gradient due to cant ordi-
nates shall in no case exceed 1 mm. Aft er 20 m they 
reach almost 3  mm for the Bloss curve and about 
2.5 mm for the cosine curve. Th e smallest values of 
the gradient due to cant ordinates occur on the sine 
curve – aft er 20 m it is about 0.4 mm.

Table 2
Values of horizontal ordinates y[mm] of the transition curves from Table 1 of System I over the fi rst 20-m section

L [m] Clothoid Fourth-degree 
parabola Bloss curve Cosine curve Sine curve

0 0 0 0 0 0
2 0.0072 0.00004 0.00010 0.00007 0.000001
4 0.0577 0.00058 0.00152 0.00114 0.00002
6 0.1946 0.00292 0.00766 0.00577 0.00017
8 0.4613 0.00293 0.02408 0.01822 0.00073

10 0.9009 0.02252 0.05846 0.04446 0.00222
12 1.5568 0.04670 0.12056 0.09214 0.00551
14 2.4721 0.08652 0.22211 0.17059 0.01190
16 3.6901 0.14760 0.37682 0.29080 0.02317
18 5.2541 0.23643 0.60022 0.46538 0.04168
20 7.2072 0.36036 0.90971 0.70860 0.07047

[Own study].



130 Koc W.

Fig. 4. Diagrams of the gradient due to cant ordinates on 
transition curves from System I in Table 1 over the fi rst 20-m 

section [own study]

Th e calculated values of horizontal ordinates for 
the second case under consideration, i.e. for System 
II in Table 1, are presented in Table 4. Th e graphs of 

these ordinates are presented in Figure 5. Figure 6 
shows the percentage values of the ratio of horizontal 
ordinates of smooth transition curves to the ordinates 
of the clothoid in the initial region.

Fig. 5. Diagrams of horizontal ordinates of transition curves 
from System II in Table 1 in the fi rst 20-m section [own study]

Table 3
Th e gradient due to cant ordinate values h [mm] on transition curves from System I in Table 1 over the fi rst 20-m section

L [m] Clothoid Fourth-degree 
parabola Bloss curve Cosine curve Sine curve

0 0 0 0 0 0
2 1,2000 0,0120 0,0317 0,0237 0,0004
4 2,4000 0,0480 0,1257 0,0948 0,0032
6 3,6000 0,1080 0,2803 0,2132 0,0106
8 4,8000 0,1920 0,4938 0,3787 0,0252

10 6,0000 0,3000 0,7644 0,5911 0,0491
12 7,2000 0,4320 1,0906 0,8499 0,0847
14 8,4000 0,5880 1,4704 1,1549 0,1341
16 9,6000 0,7680 1,9024 1,5054 0,1996
18 10,8000 0,9720 2,3846 1,9010 0,2832
20 12,0000 1,2000 2,9156 2,3410 0,3871

[Own study]. 

Table 4
Th e values of the horizontal ordinates y [mm] of the transition curves in Table 1 of System II over the fi rst 20-m section

L [m] Clothoid Fourth-degree 
parabola Bloss curve Cosine curve Sine curve

0 0 0 0 0 0
2 0,00583 0,00002 0,00004 0,00003 0,0000002
4 0,04663 0,00026 0,00068 0,00051 0,0000055
6 0,15738 0,00130 0,00342 0,00251 0,000042
8 0,37304 0,00410 0,01078 0,00818 0,000177

10 0,72860 0,01001 0,02625 0,01996 0,00054
12 1,25902 0,02075 0,05427 0,04139 0,00134
14 1,99927 0,03845 0,10025 0,07666 0,00291
16 2,98433 0,06559 0,17051 0,13074 0,00566
18 4,24918 0,10506 0,27230 0,20937 0,01020
20 5,82878 0,16013 0,41379 0,31901 0,01727

[Own study].
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Fig. 6. Percentage values of the ratio of horizontal ordinates of 
smooth transition curves to clothoid ordinates in the initial 

region for System II in Table 1 [own study]

As can be seen, for System II in Table 1 (i.e. 
R = 1250 m, h0 = 115 mm) the situation is even worse 
than for System I (R = 1850 m, h0 = 60 mm). Th e or-
dinates of the horizontal smooth transition curves in 
the initial region are very small; aft er 20 m they do not 
reach even 0.5 mm (0.02 mm for sine curve). In Fig-
ure 6, the ratio of horizontal ordinates for the clothoid 
aft er 20 m reaches 7% for the Bloss curve, while for 
the sine curve it is only 0.3%. Th is is undoubtedly due 
to the use of longer transition curves, which was due 
to the higher cant value on the circular curve and the 
need to maintain the fper value.

Table 5 shows the gradient due to cant ordinates on 
transition curves from System II in Table 1 for the fi rst 
20 m, and Figure 7 shows a suitable graphic illustration.

As shown in Table 4, the gradient due to cant or-
dinates on smooth transition curves are approximately 
twice as small as in System I, although the cant on a cir-
cular curve is h0 = 115 mm (previously h0 = 60 mm). 
Over the fi rst 10 m, the gradient due to cant ordinates 
on these curves do not exceed 0.5 mm and aft er 20 m 
they are less than 2 mm. Th e smallest gradient due to 

cant ordinates occur, as before, on the sine curve and 
aft er 20 m they are slightly greater than 0.1 mm.

Fig. 7. Diagrams of the gradient due to cant ordinates on 
transition curves from System II in Table 1 over the fi rst 20 m 

section [own study]

Although the analysis was conducted on a random 
basis, its conclusions seem to be clear. In most cases, 
it is very diffi  cult, if not impossible, to properly shape 
the initial region of smooth transition curves. Hori-
zontal ordinates of a fraction of a millimetre may pose 
a serious problem both in execution and later main-
tenance (especially in the case of ballast pavement).

Since the smooth transition curves in the initial re-
gion lead to very small values of horizontal ordinates, 
the possible modifi cation should not diff er too much 
from the shape of the clothoid in this region (the or-
dinates of which are not too big either). It should, 
however, cover the central region of the transition 
curve (by introducing non-linear curvature) and the 
region of the entrance to the circular curve. Of course, 
one should also strive to obtain the smallest possible 
length of the new solution in comparison with the 
length of the base curve (clothoid).

Table 5
Th e gradient due to cant ordinates h [mm] on transition curves from System II in Table 1 over the fi rst 20-m section

L [m] Clothoid Fourth-degree 
parabola Bloss curve Cosine curve Sine curve

0 0 0 0 0 0
2 1,2568 0,0069 0,0183 0,0138 0,00012
4 2,5137 0,0276 0,0728 0,0551 0,0010
6 3,7705 0,0622 0,1630 0,1240 0,0034
8 5,0273 0,1105 0,2884 0,2203 0,0080

10  6,2842 0,1726 0,4484 0,3441 0,0155
12  7,5410 0,2486 0,6424 0,4954 0,0268
14  8,7978 0,3384 0,8700 0,6739 0,0426
16  10,0546 0,4420 1,1306 0,8796 0,0635
18  11,3115 0,5594 1,4237 1,1125 0,0903
20  12,5683 0,6906 1,7487 1,3725 0,1238

[Own study].
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4. Proposal for a new transition curve for 
railway roads

Th e general method of identifi cation of curvature 
k(l) on transition curves [17] shows that for the radius 
R of circular curve and length lk of transition curve the 
assumed assumptions determine the following limits:

 

 

 

  

  


1(0) 0, ,

'(0) , ' 0,

k

k
k

k k l
R

Ck k l
Rl

 (22)

and the diff erential equation:

 (4)( ) 0k l  (23)

whereby the numerical factor C ≥ 0. Conditions (22) 
for C = 0 apply to the Bloss curve. Th e solution to the 
diff erential problem (22), (23) gives the general equa-
tion of curvature:
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A detailed analysis elaborated in one paper [20] 
and in a paper for the INFRASZYN 2019 conference 
[21] showed that the most advantageous solution was 
the ratio value of C = 1, because in this case the length 
corresponding to the transition curve must be greater 
than the clothoid one by only 1/3. Assuming C  = 1 
leads to the following function equation k(l):
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As can be seen, the fi rst equation segment (25) 
takes a linear form, representing the curvature of the 
clothoid. Th e other two segments are non-linear – 
they occur in the second and third power, i.e. similar-
ly to the Bloss curve. Th e angle of tangent slope Θ(l) is 
described by the equation
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whereby at the end of the transition curve its value is 
  

7
12k kl l

R
. Knowing this angle allows tangents to 

be reconciled with the next geometric element. Coordi-
nate equations of the sought transition curve can be 
written in the parametric form [17]:

 
 ( ) cos ( )x l dll , (27)

 
 ( ) sin ( )y l dll . (28)

To develop the functions  cosΘ(l) and sinΘ(l) in 
the Maclaurin ser ies, the Maxima package [23] was 
used, and then individual parts were integrated, ob-
taining parametric equations:
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At the beginning, equations (29) and (30) are con-
sistent with the parametric equations of the clothoid. 
Th e fi rst two parts from equation (5) are the same as 
in equation (29), while the fi rst part of equation (30) 
is identical to the fi rst part of equation (6).

For the determined transition curve, the function 
equations g(l) and ( )d g l

dl
 are as follows:
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 on the 

length of the new transition curve, against the background 
of the clothoid and the Bloss curve, is shown in Figure 8.

Exceeding ψ and f on the clothoid takes place for 
  0;0,667kl l . Th e elongation of the described curve 

in relation to the clothoid, resulting from the highest 
value of exceeding ψ and f, is determined by the coeffi  -
cient A = 4/3. Figure 9 shows curvature diagrams in the 
length of the clothoid and the Bloss curve in the geo-
metric system marked as System I (Table 1) and in the 
length of the new transition curve of the corresponding 
length lk = 134 m. Figure 10 presents graphs of horizon-
tal ordinates for the curves mentioned above.
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Fig. 8. Th e formation of  
3,6( ) k

m

ll
a V

 
 

 0

3,6( ) klf l
h V

 on the length 

of the clothoid, the Bloss curve and the new transition curve 
[own study]

Fig. 9. Curvature graphs on the length of the clothoid, the Bloss 
curve and the new transition curve in System I from Table 1 

[own study]

Fig. 10. Diagrams of horizontal ordinates on the length of the 
clothoid, the Bloss curve and new transition curve in System I 

from Table 1 (in the non-uniform scale) [own study]

As Figure 9 shows, the curvature diagram for the 
new transition curve signifi cantly deviates from the 
curvature diagram for the Bloss curve. Th is is especially 
true for the initial zone, where the diff erence is formed 
and makes the curves so divergent from each other. On 
the other hand, the course of the curvature diagram 
for the new curve is signifi cantly similar in length (al-
though slightly more favourable) to the curvature dia-
gram for the clothoid. Only in the fi nal region, at the 
transition from a transition curve to a circular curve, 
is a signifi cant diff erence visible: the curvature diagram 
for the new curve is much milder there.

It should be noted that the determined transi-
tion curve does not provide a smooth transition from 
a  straight line to a  transition curve, since at its start-
ing point there is a defl ection in the curvature diagram 
(Figure 9). It cannot therefore be classifi ed as a stand-
ard smooth transition curve. As it is shorter than these 
curves and was designed to  meet regulatory require-
ments, there is no doubt that it is of greater practical 
suitability for use. Th is can be confi rmed by a detailed 
analysis of the horizontal ordinates of transition curve  
and gradient due to  cant ordinates in the initial region.

5. Analysis of horizontal and gradient due 
to cant ordinates in the initial region of 
the new transition curve

To evaluate the values of the horizontal ordinates 
and the gradient due to cant ordinates in the initial 
region of the new transition curve, the fi rst 20-m sec-
tion was considered as in Chapter 3. In the analysis, 
two curves from Table 1 were taken into account – the 
clothoid and the Bloss curve, and the new transition 
curve against their background. Th e corresponding 
numerical values are shown in Table 6.

Figure 11 shows the horizontal ordinates of the 
above transition curves over the fi rst 20 m section of 
System I (i.e. for the velocity V = 160 km/h and the ra-
dius R = 1850 m). Figure 12 shows the percentage val-
ues of the ratio of horizontal ordinates of these curves 
to the ordinates of the clothoid in the initial region.

As can be seen, the horizontal ordinates of the 
Bloss curve representing smooth transition curves in 
the initial region are small, as already shown in Fig-
ure 2. Th ey do not even reach 1 mm aft er 20 m. Th e 
percentage ratio of the ordinates of this curve to the 
clothoid varies from 1% to less than 13%, while for the 
new transition curve it ranges from 75 to 80%. Th ere-
fore, the implementation possibilities in this zone of 
the new transition curve do not diff er much from the 
analogous possibilities in relation to the clothoid.

Fig. 11. Horizontal ordinates of the clothoid, the Bloss curve and 
the new transition curve on the fi rst 20-m section in System I 

[own study]
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Fig. 12. Percentage values of the ratio of horizontal ordinates 
of the Bloss curve and the new transition curve to the clothoid 

ordinates in the initial region of System I [own study]

Th e presented remarks also apply to the gradient 
due to cant (Fig. 13). Th e gradient due to cant ordi-
nates for the Bloss curve are much smaller than the 
corresponding values for the clothoid and the new 
transition curve and are impossible to practically im-
plement for the fi rst 10 m.

Diagrams of horizontal ordinates for System II, 
i.e. for velocity V = 160 km/h and radius R = 1250 m, 
are shown in Figure 14. Figure 15 shows the percent-
age ratio of horizontal ordinates of these curves to the 
ordinates of the clothoid in the initial region, while 
graphs of the gradient due to cant ordinates are shown 
in Figure 16.

Fig. 13. Diagrams of the gradient due to  cant ordinates for the 
clothoid, the Bloss curve and the new transition curve for the 

fi rst 20 m of System I [own study]

Fig. 14. Diagrams of horizontal ordinates of the clothoid, the 
Bloss curve and the new transition curve on the fi rst 20 m in 

System II [own study]

Table 6
Selected values of horizontal ordinates y [mm] and the gradient due to cant ordinates h [mm] in the initial region of selected 

transition curves

System I
V = 160 km/h R = 1850 m h0 = 60 mm

l = 1 m l = 3 m l = 5 m l = 10 m l = 15 m l = 20 m

y 0.000901 0.024324 0.112613 0.900901 3.040541 7.207208

Clothoid lk = 100 m h 0.600000 1.800000 3.000000 6.000000 9.000000 12.00000

Th e Bloss curve lk = 150 m 
y 0.000006 0.000483 0.003704 0.058458 0.291892 0.909710

h 0.007964 0.071040 0.195556 0.764444 1.680000 2.915556

Th e new transition curve 
lk = 134 m

y 0.000675 0.018353 0.085572 0.696277 2.387530 5.743949

h 0.451078 1.372684 2.319226 4.786826 7.384095 10.09233

System II
V = 160 km/h R = 1250 m h0  = 115 mm

l = 1 m l = 3 m l = 5 m l = 10 m l = 15 m l = 20 m

Clothoid lk  = 183 m
y 0.000729 0.001967 0.091075 0.728597 2.459016 5.828780

h 0.628415 1.885246 3.142077 6.284153 9.426230 12.56831

Th e Bloss curve lk = 274 m
y 0.000003 0.000215 0.001653 0.026251 0.131910 0.413790

h 0.004584 0.041056 0.113486 0.448353 0.996217 1.748690

Th e new transition curve 
lk = 244 m

y 0.000548 0.014844 0.068977 0.557370 1.898860 4.541937

h 0.473235 1.431105 2.438580 4.898359 7.477565 10.13554
[Own study].
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Fig. 15. Percentage values of the ratio of horizontal ordinates 
of the Bloss curve and the new transition curve to the clothoid 

ordinates in the initial region of System II [own study]

Fig. 16. Diagrams of the gradient due to cant ordinates for 
the clothoid, the Bloss curve and the new transition curve for the 

fi rst 20 m of System II [own study].

As can be seen, for velocity V = 160 km/h and ra-
dius R = 1850 m, the horizontal ordinates in the initial 
region are even smaller than in the previous case. Th e 
horizontal ordinates of the Bloss curve per 20 m do 
not even reach 0.5 mm and the ordinates of the gradi-
ent due to cant are also very small. Th e corresponding 
values for the new transition curve are slightly smaller 
than for the clothoid.

Th us, for the Bloss curve, the practical implemen-
tation and subsequent  maintenance of very small 
horizontal ordinates and the gradient due to cant 
ordinates in the initial area does not seem possible. 
However, the implementation possibilities of the ini-
tial zone of the new transition curve are analogous to 
those of the clothoid.

Th e presented new transition curve could suc-
cessfully compete with the commonly used transition 
curve in the form of a clothoid. It is similar to it in the 
initial region, but it diff ers signifi cantly in its further 
length, especially in the fi nal region, where it provides 
a gentle entry from a transition curve into a circular 
curve. Th is creates a signifi cant advantage of the new 
geometric solution presented in the article from the 
point of view of dynamic properties in the track – rail 
vehicle system.

6. Conclusions

On railway roads, the mutual comparison of tran-
sition curves requires certain assumptions regarding 
the binding values of permissible kinematic param-
eters – the acceleration increment ψ and the speed 
of raising the rolling stock wheel on the gradient due 
to cant f. Th ere is an intuitive conviction that curves 
with non-linear curvature change on the length (i.e. 
smooth transition curves)  may be subject to  much 
higher (even doubled) permissible values than for the 
clothoid (with linear curvature). Th is was even re-
fl ected in the binding regulations. In this article, it has 
been unequivocally demonstrated that, on smooth 
transition curves, exceeding the values of ψ and f oc-
curring on the clothoid is not local (point), but covers 
at least half of their length, and the value of this excess 
is signifi cant. Th erefore, it seems appropriate to main-
tain, for all types of transitional curves, the same rules 
concerning the limit values for kinematic parameters.

Smooth transition curves have been known for 
a long time and have many undisputed advantages – 
fi rst of all, they are characterized by lower values of 
dynamic interactions than is the case with a clothoid. 
However, the scope of their use on railway roads has 
been very limited so far. Unfortunately, these curves 
have one fundamental disadvantage – very small 
values of horizontal ordinates (and gradient due to 
cant ordinates) in the initial region, in practice of-
ten impossible to implement and maintain. Th is was 
confi rmed in the analysis of the problem carried out 
within the framework of this study.

It was therefore considered that the root cause 
of the problems encountered with regard to smooth 
transition curves is the excessive soft ening of the cur-
vature in their initial region. Using the  method of 
curvature identifi cation by means of diff erential equa-
tions, a  new form of transition curve was obtained, 
abandoning the condition of zeroing the curvature 
derivative at the initial point.

Th e new transition curve is characterized by a mild 
curvature in the area of the entrance to the circular 
curve and its certain disturbance in the initial region 
(smaller, however, than in the case of a clothoid). It 
was shown that the new curve (from the implementa-
tion point of view) has a decisive advantage over the 
Bloss curve representing smooth transition curves. 
Th e implementation possibilities of this curve in the 
initial zone do not diff er too  much from the analo-
gous possibilities in relation to a clothoid.

It seems that the presented new transition curve 
could successfully compete with the currently com-
monly used transition curve in the form of a clothoid. 
It is similar to it in the initial region, but it is signifi -
cantly diff erent in its further length, especially in the 
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fi nal region, where it provides a  gentle entry from 
a  transition curve into a circular curve. Th is creates 
a signifi cant advantage of the new geometric solution 
presented in the article from the point of view of dy-
namic properties in the track – rail vehicle system.

Th e issues described in this article appear to be rel-
evant as other possibilities for improving the existing 
situation are largely limited. Th e demonstrated lack of 
practical implementation and maintenance of the or-
dinates of the transition curve and the ordinates of the 
gradient due to cant in the initial region signifi cantly 
undermines the purposefulness of using the standard 
smooth transition curves on railway lines.
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